Optimized View Frustum Culling Algorithms

Ulf Assarsson and Tomas Moller
Chalmers University of Technology
Department of Computer Engineering
Technical Report 99-3

March 1999

Abstract

This paper presents new techniques for fast view frustum culling. View
frustum cullers (VFCs) are typically used in virtual reality software, walk-
through algorithms, scene graph APIs or other 3D graphics applications.
First we develop a fast basic VFC algorithm. Then we suggest and eval-
uate four further optimizations, which are independent of each other and
works for all kinds of VFC algorithms that test the bounding volumes
(BVs) against the planes of the view frustum. Results when optimizing
specifically for axis aligned bounding boxes (AABBs), oriented bound-
ing boxes (OBBs), bounding spheres and different kinds of navigation are
delivered. In particular, we provide solutions which give average speed
ups of 3-10 times for AABBS and OBBs depending on the circumstances,
compared to the conventional AABB algorithm used for instance in Di-
rectModel [DirectModel], and speed ups of 1.2-1.4 for bounding spheres,
compared to Silicon Graphics’ implementation in Cosmo3D [Cosmo3D]
and Performer [Performer].

1 Introduction

A frustum consists of six planes, where two are parallel to each other (see figure
1) . For orthogonal viewing the frustum is a box, and in the case of perspective
viewing, the frustum is a truncated pyramid, which is the frustum that we treat
in this paper. A scene graph is usually a directed acyclic graph (DAG), where
each node has a bounding volume (BV) attached to it. The BV bounds all
of its children. Geometry is located in the leaves of the scene graph. A view
frustum culler (VFC) culls away the nodes that lie outside the view frustum,
i.e those objects that are outside the observer’s field of view. When traversing
the scene graph, the BV of the current node is tested for intersection with the
view frustum. If the BV is totally outside, then it should not be drawn and
the traversal is pruned. On the other hand, if the BV is completely inside the
view frustum, then all of its children should be drawn, and no further frustum
intersection tests are needed for that subtree. However, if the BV intersects the



view frustum, then two things may happen. First, if the node is a leaf, then
the geometry of that leaf is drawn. Second, if it is an internal node, then the
traversal continues.

Figure 1: A view frustum for perspective viewing.

Faster VFCs are particularly important if complex and large scene graphs are
traversed, as the traversal time will become crucial. Dividing complex geometry,
consisting of multiple triangles, into graphs with many nodes might improve the
ability to cull away triangles that lie outside the view frustum, resulting in less
triangles to be sent to the rendering pipeline. It would decrease the rendering
time and thus could result in an increase of the overall performance and realism.
Reducing the time for view frustum culling will increase performance of a single
processor system. Moreover, even when view frustum culling is not the bottle
neck in a multiprocessor rendering system, faster VFCs will free processor time
to other tasks.

This paper presents and examines techniques to significantly speed up view
frustum culling. Many scene graph based APIs (Application Programing In-
terfaces), such as DirectModel [DirectModel], Performer [Performer], Cosmo3D
[Cosmo3D] and the forthcoming Fahrenheit Scene Graph [Fahrenheit], make use
of hierarchical view frustum culling [Clark76] in order to determine what objects
that are potentially visible.

Like many existing VFCs [DirectModel, Performer, Cosmo3D, Fahrenheit]
we use a hierarchical bounding volume tree in order to lower the number of
nodes necessary to be tested for intersection. But by caching results from previ-
ous calculations, reducing the number of frustum planes needed to do tests for
and exploit spatial coherence, we decrease the execution time of the frustum-
bounding volume intersection test. In particular, we develop a basic intersection
test, which is fast because we only do the trivial intersection or rejection tests.
If these fail we do not call the more expensive tests that are necessary to de-
termine exact intersection between the BV and the view frustum. Instead we
recursively do the trivial tests for the hierarchical sub-volumes. At the leaves,
we could choose to do the more expensive tests if the trivial tests fail. However,
we just accept the nodes as being visible. For our models, this gave no practical
penalties of the rendering speed.

We also present four optimizations, which we call the plane-coherency test,
the octant test, masking and the TR coherency test. The idea behind the plane-
coherency test is to for each node to be tested, start testing against the view



frustum plane the BV was outside last frame (if any), and in this way utilize
spatial coherence. For symmetrical frustums, the octant test explore the fact
that it is enough to test the BV against the three closest view frustum planes.
Masking considers that if a BV is totally outside or inside any view frustum
plane, then the sub-volumes are too. Finally the frustum movement coherence
test utilizes that for pure rotations or pure translations of the eye between two
adjacent frames, for all objects that has not moved in the world, their relative
position or distance to the view frustum planes can be tested against the relative
motion of the view frustum. In this way we make use of spatial coherence.

Naturally the performance of the coherence optimizations are highly de-
pendent on how the user navigates. Generally small steps give larger spatial
coherence.

Our algorithms were tested for hierarchical trees of bounding spheres, axis
aligned bounding boxes (AABBs) and oriented bounding boxes (OBBs). The
implementations of the AABB and OBB algorithms were done on a double!
PentiumII 200 MHz with 128 Mb RAM and compared with the VFC in Direct-
Model on the same machine. The bounding sphere algorithms were run on a
SGI 02 with a R5000 processor, and were compared with the VFC in Cosmo3D
and Performer on the same machine.

We tested our VFCs with three models: a car factory shop floor of 184.000
polygons in 3800 graph nodes, a factory shop floor of 52.000 polygons in 1274
graph nodes and a factory cell of 167.000 polygons in 188 graph nodes. All are
models of real environments and are used in industrial applications.

We have compared the speed of our algorithms to the AABB implemen-
tation in DirectModel and the bounding sphere implementation in Cosmo3D
and Performer. The Performer API was consistently slower than the Cosmo3D
API, and therefore we chose to only present comparisons of our algorithms to
the fastest - Cosmo3D. Our results for scene graphs with hierarchical bound-
ing boxes are encouraging and shows us that with certain assumptions, average
speed ups of 3 - 10 times can be achieved. For bounding spheres we only man-
age to get 1.4 times? faster VFC tests in average in the best case, compared to
Cosmo3D. This is because testing spheres against a frustum is very fast, and
thus there is not as much time to gain with smarter algorithms.

This paper commences with a discussion of new view frustum culling al-
gorithms, section 2, followed by our results, section 3, and a review of re-
lated work, section 4. The paper is ended with conclusions and future work,
section 5.

2  Frustum-Bounding Volume Intersection

This study is divided into four main sections: General Culling Algorithms,
AABBs (Axis Aligned Bounding Boxes), OBBs (Oriented Bounding Boxes) and

IThe algorithm only uses one of the processors, since it is not (yet) parallelized.
2In this paper we define speed up as timel/time2, which means that a speed up of 1.0 is
no speed up at all.



bounding spheres. Each BV has its own advantages, and for each case we
have tried to optimize the algorithm according to the specific circumstances.
The resulting algorithms have been compared with the corresponding imple-
mentations of view frustum culling in three major present graphic packages,
one using AABBs [DirectModel] and the other two using bounding spheres
[Performer, Cosmo3D]. See section 4 for details of how they work. Since Per-
former was consistently slower than Cosmo3D?, we chose to only present the
comparisons to Cosmo3D.
A view frustum is defined by six planes:

WVF,i:ni'X‘f'di:O (1)

i = 0...5, where n; is the normal and d; is the offset of plane 7y r;, and x is
an arbitrary point on the plane. If x is outside 7y g, then n; - x + d; > 0 and
vice versa.

2.1 The General Culling Algorithm

Our algorithms for view frustum culling of scene graphs with AABBs, OBBs or
bounding spheres for each node, are all based on a general culling algorithm with
small changes and optimizations to suit the different cases. We have partitioned
our main algorithm into five steps:

e the basic intersection test

the plane-coherency test,

the octant test

e masking

e TR* coherency.

The plane-coherency test, the octant test, masking and TR coherency can
be utilized in a VFC independently of each other. That is, we can choose and
combine the steps anyway we like.

2.1.1 The Basic Intersection Test

Instead of choosing any of the approaches mentioned in section 4, we developed
a method based on the dilation theorem for intersection testing [Moller98].5 The
basic idea is to sweep the BV to be tested, along the planes of the view frustum,
thus resulting in a new volume, for which it is sufficient to test one point, or a
few points, for intersection. This new volume can be derived in three ways:

30nly by 3-5 percent though. The comparisons were done on a SGI 02

4TR. stands for Translation and Rotation.

5A similar approach is used by Green [Green95] in his Polygon-Cube intersection test,
where he sweeps a cube along a line segment.



e We pick an arbitrary point ppy, relative to the BV. Keeping the orien-
tation of the BV, we sweep the BV (together with ppy ) along the outer
side of all planes of the VF, as close as possible without intersecting them.
All points passed by our point pgy defines the outer surface of our new
volume. Then we sweep the BV along the inner side of all planes of the
VF, keeping the orientation and using the same point ppy. All points
now passed by ppy, defines the inner surface of the new volume (see
figure 2a)%.

e We can use the results of the dilation theorem immediately. Pick an
arbitrary point ppy, relative to the BV. Translate the BV so that the
point ppy coincides with the origin, and reflect the BV along all axes.
Then sweep the reflected BV along the planes of the view frustum, keeping
the reflected BV’s orientation and with the point pgy on the planes. The
swept volume defines our new testing volume (see figure 2b). The dilation
theorem is only defined for convex objects.

o If we use the dilation theorem individually for each plane 7y r; of the view
frustum, and choose ppy,; to be a mid point of the BV in the direction
of the plane normal n;, we do not benefit from reflecting the BV when
sweeping along the plane 7y ;. Therefore we can just as well skip the
reflection part. It will only affect the outer corners and edges of the result-
ing testing volume, which we, as we explain further down, approximate
by the corners and edges of the six outer planes instead (see figure 2c).

Now all we have to do to perform a complete intersection test is to check
whether our chosen point ppy lies, or points ppy,; lie, outside the corresponding
outer planes of the new volume (for ”outside” ), inside all the corresponding inner
planes (for ”inside”) or between the inner and outer planes (for ”intersection”).
Similar ideas are used in robot motion planning [Berg97].

We chose to use the third listed approach. One interesting fact is that this
(and the first listed) culling method against a view frustum works for arbitrarily
shaped bounding volumes. The inside planes will always be six and parallel
to the planes of the view frustum. But the outside planes can be numerous.
However, we note that the outside planes consist of six planes parallel to the
view frustum planes and some additional planes at the edges and corners of the
new volume (see figure 2a and 2b), which orientation depend on the shape of
the bounding volume. If we, as an approximation, only keep the six inner planes
and six parallel outer planes of our volume, skipping the planes at the edges
and corners, we will only increase the volume a small amount. The great benefit
is that we end up with a volume consisting of six pairs of parallel planes, for
which very fast intersection testing can be performed. How to find these planes,
resulting from sweeping AABBs, OBBs and bounding spheres, is discussed in
sections 2.2, 2.4 and 2.3. A general approach could be to, for each view frustum
plane my g, select ppy as a mid point of the BV in the direction of the plane

SHowever, if the BV is larger than the view frustum, there are no inner planes.



VF

nL( VF IlR $ nL nR
X 0-=> (-

Reflect the convex BV
along all axes

()

nL( VF nR $
N
2 2d_ V

()

Figure 2: Different ways to derive a volume for which it is enough to test only one
point ppy (or one point for each plane in (¢)) for an intersection test between
the bounding volume BV and the view frustum VF. (a) Sweeping an arbitrarily
shaped BV along all planes on the insid¢ and outside of VI, as close as possible
without intersecting VF. The points swept by ppy define the testing volume.
(b) Using the dilation theorem [Moller98] on a convex bounding volume BV,
sweeping the reflected BV along the VF, with the point pgy in the planes of
VF, to obtain the new testing volume. (c) Sweeping BV along the planes of VF,
keeping a midpoint of BV, corresponding to the plane normal, in the plane to
obtain an approximate testing volume. The approximations are located at the
outer corners (and edges for a 3D view frustum).



normal n;, and find the maximum extension 2a of the BV, in the direction of n;
(see figure 2¢). The inner and outer planes would then be the parallel planes of
Ty F,i, at an offset of a in the direction of n; and —n; from my F; respectively.

In general the algorithm can be described as: for each plane, test if the
BV is outside, inside or intersecting the plane. If outside, terminate and re-
port ”outside”. If the BV was inside all planes, return ”inside”, else return
”intersecting”.

We choose this approach since it simplifies the code, and then we optimize
this test in several ways in the subsequent sections. But it also increases the
volume where we cannot safely report outside or inside. If the node is a leaf we
can choose to do more accurate tests.

2.1.2 The Plane-Coherency Test

The goal of this test is to exploit temporal coherence. Assume that a BV of
a node was outside one of the view frustum planes last time it was tested for
intersection (previous frame). For small movements of the view frustum there
is a high probability that the node is outside the same plane this time, which
means that we should start testing against that plane hoping for fast rejection of
the BV. If the BV was outside a plane last frame, then an index to this plane is
cached in the BV structure. For each intersection test, we start testing against
that plane and test the others afterwards if necessary.

The order of testing the other planes could be optimized. Performer states
that the optimal order is le ft-, right-, near-, far-, up- and down plane [Performer-b].
Testing in this order could be managed by having six lists of plane orders, each
starting with different outside planes. However, we did not include nor confirm
this optimization.

2.1.3 The Octant Test

Assume that we split the view frustum in half along each axes, resulting in eight
parts, like the first subdivision of an octree. We call each part an octant of the
view frustum.

If we have a symmetrical view frustum, which is the most common case
(except for CAVEs [SIGGRAPH93]), and a bounding sphere, it is sufficient to
test for culling against the outer three planes of the octant in which the center of
the bounding sphere lies (see figure 3). This means that if the bounding sphere
is inside the three nearest (outer) planes, it must also be inside all planes of the
view frustum. If it is outside any of the planes, we know it is totally outside the
view frustum, and otherwise it is intersecting.

Actually this relationship can be extended to include arbitrary bounding
volumes, if we add one extra condition. If the radius rg of a minimal sphere,
surrounding the BV and with center point cg, is less than the distance d from
the view frustum center (cyr) and cyp’s closest view frustum plane, then it
is sufficient to test for intersection against the three outer planes of the view
frustum octant (Ovy ) that the sphere center, cg lies in (see figure 4).



. Ta

(@) (o) ()

Figure 3: (a) 2D-view of a symmetric VF divided in half along each axis. m,
and m, are the outer planes of octant O. 7. and 74 are the inner planes. (b)
View frustum divided in octants. (c¢) For a symmetrical VF it is enough to test
for intersection against the outer planes of the octant in which the center (cg)
of the bounding sphere lies.

This is true, since an arbitrary BV cannot intersect the planes of another
octant than Oy p without intersecting the planes of Oy g, if rg < d.

The distance between the center of the view frustum and its nearest plane can
be precomputed once for each frame, and the radius and center of the minimal
sphere surrounding the BV can be precomputed when the node corresponding
to the BV is created or changed. It means that for the additional cost of one
comparison for each bounding volume to be tested, we can add the octant test
to our algorithm even if we have arbitrary bounding volumes.

2.1.4 Masking

Assume that a node’s BV is completely inside one of the planes of the view
frustum. Then we know that the BVs of the node’s children also lie completely
inside that plane, and that plane can be eliminated (masked off) from further
testing in the subtree of the node [Bishop98].

When traversing the scene graph, a mask (implemented as a bitfield) is sent
from the parent to the children. This mask is used to store a bit for each
frustum plane, which indicates whether the parent is inside that plane. Before
each plane test, we check if that plane is masked off or not.

If we could eliminate the low-level polygon clipping against the window bor-
der corresponding to a view frustum plane, for all nodes that are totally inside
that plane, then maybe masking could pay off a lot [Bishop98]. Low level
clipping of polygons is usually done against each view frustum plane for each
polygon sent for rendering. For nodes that are totally inside the view frustum,
all clipping could be disabled and then potentially provide speed-ups.

2.1.5 The TR Coherency Test

TR coherency stands for translation and rotation coherency. In this optimiza-
tion step, we exploit the fact that when navigating in a 3D world, the navigation



1y = radius of the minimal sphere surrounding the arbitrary bounding volume
d = distance between view frustum center and its closest plane(s)

¢g = center of the minimal sphere surrounding the arbitrary bounding volume
¢y = center of the view frustum

Oy = octant in which c_lies

Figure 4: If r¢ <= d we can use the octant test for bounding volumes with
arbitrary shapes.

sometimes only allows you to either rotate around one axis, or translate. For
objects that have not moved since the last frame the following applies:

1. If, for instance, a BV was outside the left plane of the view frustum last
frame, and the view frustum only has rotated to the right since then, we
know that the BV still is outside the left plane (assuming that the rotation
is smaller than 180° — angle between left and right plane). In general
this means that if only view frustum rotations have been done around
either the x-axis, y-axis or the z-axis of the view frustum since last culling
invocation, we can return outside for BVs if they were outside the plane
last frame and if the distance to the plane has increased (see figure 5a).

2. If the view frustum only has done a pure translation since last frame, the
distances from all BVs to the same view frustum plane have increased
or decreased by the same fixed amount Ad (see figure 5b). This Ad is
possible to precompute once for all intersection tests against the corre-
sponding plane. If only a translation (in any direction) has been done
since last view frustum culling invocation, we precompute Ad; for each
view frustum plane 7y r; by projecting the translation on the normal of
the planes. For each BV and view frustum plane to be tested, we compare
the corresponding Ad; with the distance between the BV and the plane
last frame.



Ad = increment/decrement of

— View frustum of frame 1 distance to plane P
n = plane at frame 1
..... View frustum of frame 2 n'= plane at frame 2

— View frustum of frame 1
----- View frustum of frame 2
(@) (o) ()

Figure 5: (a) Rotations of the view frustum. If the BV of a non-moving object
was outside the view frustum at frame 1, we know that, because of the direction
of rotation, it is also outside in frame 2. (b) Translations of the view frustum.
(¢) A view frustum and its frustum coordinate axes.

For (1) we precompute the plane that can use this optimization (if any),
and for each BV which was outside this plane last frame, we return ”outside”.
Let us assume the view frustum axes are arranged according to figure 5c. If the
view frustum, since last frame, has done a pure rotation around the y-axis in the
positive direction, we can do quick rejection against the right plane. If instead
the rotation was negative, we can do quick rejection against the left plane.
We have to keep track of the accumulated rotations to be able to invalidate
any quick rejections when the total rotation around the axis exceeds 180° —
angle between left and right plane. The x-axis and the up- and down planes
are treated similarly. If rotations only occured around the z-axis, (1) can be
used for both the near- and far plane since they are parallel to each other.

For (2) we have to add members to the BV structure holding the distances
from the BV to the different planes of the view frustum, and we must also
add a member indicating whether or not the BV was explicitly tested last time
(otherwise the interesting distances is not calculated, and we must perform our
test with another method).

Many games and other applications could benefit a lot from the TR co-
herency optimization. In some rendering systems, the window is redrawn at
a certain frequency rather than updated only when the camera or an object
moves. In these systems when the view has not changed between two render-
ings, we can save a lot of work for all objects that are completely outside or
inside the view frustum.

10



2.2 AABB

N n-vertex

n-vertex

p-vertex

p-vertex N

Figure 6: The negative far point (n-vertex) and positive far point (p-vertex) of
a bounding box corresponding to plane 7 and its normal.

Instead of testing a point against the inner and the outer planes of a gen-
erated testing volume (as suggested as a general approach), we found that
AABBs could be tested quickly against the VF planes using the tricks of Greene
[Hoff96b, Hoff97, Greene94, Green95]. We find the n- and p-vertices (Hoff call
them negative- and positive far point [Hoff96b]) of the bounding box correspond-
ing to the plane (see figure 6) and insert those points in the plane equation to
decide whether the box is inside, outside or intersecting. The p-vertex is de-
fined as the vertex lying farthest in the direction of the plane normal, and the
n-vertex is defined as the vertex lying farthest in the negative direction of the
plane normal. For AABBs we assume that the tests are made in world coordi-
nates.

Finding the two n- and p-vertices can be done in 9 multiplications and 3
comparisons by projecting the normal of the view frustum plane on to the box’s
axes and test the signs of the x-, y- and z-components of the projection. Since
all AABBs are given in the world coordinate system (aligned to the world x-,
y- and z-axes) and we transform all view frustum plane equations (i.e. plane
normals and offsets) to world coordinates at the beginning of each frame, we
have the AABBs and the normal of the planes in the same coordinate system,
which makes a projection unnecessary . We can use the signs of the x-, y-
and z-components of the plane normal immediately, leaving us with only three
comparisons. If we create a bitfield of the signs, letting for instance a negative
sign be represented by a ’0’ and a positive sign be represented by a '1’, we can
use this bitfield to get the corresponding vertex from a Look Up Table (LUT).
In this way we avoid the conditional branches caused by if-statements, which
can lead to expensive pipeline prediction misses. This idea is used by Donovan
et al. [Donovan94]. If we order the LUT properly, we can invert the bitfield to
get the opposite vertex of v in the box.

If we are going to test multiple AABBs against the view frustum (which
generally is the case) and since all AABBs have the same orientation, it is a
good idea to precompute the bitfields (indices to the n- and p-vertices) for each

11



bool intersect = false
for i in [all view frustum planes 7y p;] do
v, < negative far point (n-vertex) in world
coordinates of box relative to 7y gy,
Q< Vyp-n;+ dz
if a > 0 then return Outside
vp < positive far point (p-vertex) in world
coordinates of box relative to 7yp;
b« Vp - n; + d;
if b > 0 then intersect = true
end loop
if intersect then return Intersecting
else return Inside

Figure 7: Pseudo code of general algorithm for culling AABBs or OBBs

view frustum plane once each frame [Haines94].

A post analysis of our modification of the algorithm for boxes shows that
it has transformed into the trivial rejection and acceptance tests of [Hoff96b],
[Hoff97] and [Green95]. A listing of the algorithm is given in figure 7.

2.3 OBB

The only thing that differs our OBB-algorithm from our AABB-version, is that
in the latter, we do not do any projection when calculating the n- and p-vertices
(see section 2.2 and [Green95]). Adding this projection means that we add 9
multiplications and 3 add-operations for each plane intersection test.

YZ - plane MT
5{5@ |
T T
n/ .

MT = world to view coordinate matrix

Y?—} X T = local matrix at each node

V4

Figure 8: (a) For symmetrical view frustums the normal of the left clip plane
n is the reflection in the yz-plane of the normal of the right clip plane. In view
coordinates n'¢/t = (—nright 0 nright) (b) Attach world-to-view matrix at the
root.

12



bool intersect = false
for i in [all view frustum planes 7y p;] do
c+cg-n;+d;,
where n; and d; are normal and constant
in the plane equation for myp;
if ¢ > rg then return Outside
if ¢ > —rg then intersect = true
end loop
if intersect then return Intersecting
else return Inside

Figure 9: Pseudo code of general algorithm for culling bounding spheres. cg is
center of the sphere. rg is the radius of the sphere.

2.4 Spheres

The basic intersection test for spheres is similar to that of AABBs/OBBs but
it is simpler. First the frustum and the objects are transformed with the view
matrix, placing the top of the pyramid of the frustum at the origin of the viewer
looking along the negative z-axis”. The planes of the view frustum are moved®
a distance equal to the radius of the sphere in the directions of the normals.
To create the outer planes, the frustum planes are moved outwards from the
center of the frustum, and by moving the frustum planes towards the center
of the frustum, the inner planes are created. The same optimizations as for
AABBs/OBBs were then added on top of that. The algorithm is listed in figure
9.

As seen in the statistics (section 3.3), the performance was not nearly as
good as for AABBs/OBBs. Therefore we tried to approach the frustum-sphere
case by testing each plane of the view frustum, and remove unnecessary oper-
ations. The left, right, bottom and top planes all pass through the origin and
therefore the d component of the plane equation is 0 and this addition is then
removed. These planes also have one of the components in the normals being 0
and these multiplications can therefore be avoided. Finally, for the near and far
planes all multiplications can be avoided since their normals are n = (0,0, 41)7.
We tried this approach for a symmetric frustum, where even more multiplica-
tions could be avoided by noting that the top/bottom and left /right plane pairs
have common normal components with different signs. We call this the Simple

"Transforming all objects for testing to the view coordinate system, might seem like in-
troducing some overhead. But for OBB-hierarchies and sphere-hierarchies centers, axes and
dimensions are often given relative to the parent of the nodes, which means that we have to
perform a transformation of those data anyway. Merging the view coordinate transformation
and all the transformations of the parents (from the node to the root) can be done to just one
matrix. If we attach the transformation from world coordinates to view coordinates at the
root and then recursively, for each children, multiply with the child’s own transformation ma-
trix relative to its parent, we can include all transformations in just one matrix multiplication
at each node, to get the nodes total transformation to the view coordinates (figure 8b).

8Instead of actually moving the planes we can make the comparision against the +radius.

13



algorithm. Simple can also be extended with the octant test. Finally, we also
tested non-symmetric frustum.

3 Results

Each optimization has been thoroughly tested, to determine whether its possibly
introduced overhead has paid off in shorter average execution times, and the
results are discussed in each subsection below and displayed in the tables.

The implementations of the AABB and OBB algorithms were done on a
double PentiumlII 200 MHz with 128 Mb RAM and were compared with the
VFC in DirectModel on the same machine. The bounding sphere algorithms
were run on a SGI O2 with a R5000 processor, and were compared with the
VFC in Cosmo3D and Performer on the same machine. All algorithms were
tested on three virtual environments. Case 1 consisted of a car factory shop
floor of 184.000 polygons in 3800 graph nodes. Case 2 was a factory cell of
167.000 polygons in 188 graph nodes, and case 3 was a factory shop floor of
52.000 polygons in 1274 graph nodes. A snapshot from the environment of case
1 is shown in figure 11.

In order to compare different combinations of the algorithms fairly, the cam-
era was moved along a precomputed path, which we call general navigation,
by which we mean that between each frame, the view frustum performs both
a translation and a rotation. The path went inside the environments from one
end to the other.

We also include a column which we call random user navigation. Here we
present the results from letting a user navigate arbitrary inside and outside the
environments. We wanted to see the performance of the individual algorithms
in a couple of real cases and not only fictitious cases. For most cases the random
user navigation performs differently than for general navigation. This is mainly
because the user moves in other step sizes than we do along our fixed path, and
because the user sometimes only translates or only rotates the view (not both
simultaneously).

We have added the columns pure rotation and pure translation because for
some cases these types of navigation provide significant speed ups.

Figures of worst case behaviours of our algorithms would be interesting, i.e.
how much slower our AABB-, OBB- and bounding sphere versions run in their
worst cases compared to the VFC in DirectModel and Cosmo3D respectively.
Since we did the implementation for modern processors with caches and pipelin-
ing it is very hard to get any meaningful measurements, while cache-misses eas-
ily increase the execution time multiple times, and occur spontaneously without
being controlled by the algorithms.

3.1 AABB

From the tables we see that we get the highest performance when we add the
plane-coherency test and the TR coherency test and only do pure translations.

14



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 2.2 2.8 3.9 3.1
Masking 2.1 2.9 4.0 2.7
Plane-coherency test 2.2 3.6 4.3 2.8
Octant test 2.5 3.1 3.9 3.4
Plane-coherency test
+ octant test 2.8 4.0 4.8 3.3
Plane-coherency test
+ masking 2.1 2.7 3.4 2.9
Plane-coherency test
+ TR coherency 2.5 3.8 5.0 8.3
Plane-coherency test
+ octant test + masking 2.5 4.3 5.0 4.1

Plane-coherency test
+ octant test

+ TR coherency 2.6 3.7 5.1 8.0
Plane-coherency test

+ masking

+ TR coherency 2.3 3.5 4.6 7.8

Plane-coherency test

+ octant test + masking
+ TR coherency 2.5 3.7 5.3 6.8
Plane-coherency test

+ octant test + masking
+ TR coherency

+ OBB capacity 2.2 3.0 4.6 6.0

Table 1: Casel: Data from measurements between a standard AABB algorithm
and our new AABB algorithm in the factory environment of =~ 184.000 polygons
in 3800 graph nodes, with different optimizations added to the algorithm. The
figures show average speed up times after ~ 200.000 intersection tests.

15



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 2.0 1.9 2.5 2.2
Masking 1.9 1.7 2.4 2.1
Plane-coherency test 2.3 2.2 3.2 2.9
Octant test 2.1 2.1 2.5 2.3
Plane-coherency test
+ octant test 2.6 24 3.5 3.0
Plane-coherency test
+ masking 2.2 2.0 3.0 2.6
Plane-coherency test
+ TR coherency 2.2 2.0 2.8 3.1
Plane-coherency test
+ octant test + masking 2.4 2.2 2.6 2.8

Plane-coherency test
+ octant test

+ TR coherency 2.4 2.2 3.0 3.3
Plane-coherency test

+ masking

+ TR coherency 2.2 2.0 2.8 3.1

Plane-coherency test

+ octant test + masking
+ TR coherency 2.2 2.1 2.9 3.1
Plane-coherency test

+ octant test + masking
+ TR coherency

+ OBB capacity 2.1 1.9 2.6 3.0

Table 2: Case2: Data from measurements between a standard AABB algorithm
and our new AABB algorithm in a factory cell of ~ 167.000 polygons in 188
graph nodes. The figures show average speed up times after ~ 25.000 intersec-
tion tests.

16



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 3.1 3.9 4.3 3.7

Masking 2.8 3.6 3.9 3.4

Plane-coherency test 3.4 4.5 4.9 4.3

Octant test 3.1 3.5 3.7 4.3

Plane-coherency test

+ octant test 3.9 5.1 5.6 5.1

Plane-coherency test

+ masking 3.1 4.1 4.5 4.0

Plane-coherency test

+ TR coherency 3.0 4.0 4.4 11.0

Plane-coherency test

+ octant test + masking 3.7 4.9 5.0 4.8

Plane-coherency test

+ octant test

+ TR coherency 3.6 4.5 4.8 9.0

Plane-coherency test

+ masking

+ TR coherency 3.2 4.2 4.5 10.7

Plane-coherency test

+ octant test + masking

+ TR coherency 3.4 4.4 4.7 8.1

Plane-coherency test

+ octant test + masking

+ TR coherency

+ OBB capacity 3.2 4.0 4.3 7.6

Table 3: Case3: Data from measurements between a standard AABB algorithm
and our new AABB algorithm in a factory of = 52.000 polygons in 1274 graph

nodes. The figures show average speed up times after

tests.

17

~
~

200.000 intersection



For general navigation we have the highest speed up if we use plane-coherency
test + octant test. Generally we want to have as high performance in all cases as
possible, and are not interested in special peaks depending of how we navigate.
Therefore the algorithm including the plane-coherency test, the octant test and
the TR coherency test might be the best choice, since this option gives both
high performance for general navigation and for pure rotations and translations.
If we assume that we use floating point accuracy for all coordinates (which is
very common in real time graphic packages), including all these optimizations
requires adding eight 32-bit words to the BV structure. This can be compared
to typically six 32 bit words originally for AABBs, four for bounding spheres
and 12 for OBBs.

If we precompute the indices to the n- and p-vertices once each frame, instead
of calculating them for each AABB (see section 2.2), an additional speed up of
5 — 10% of the figures in tablel, table2 and table3 will be achieved.

For individual intersection tests between a BV and the view frustum, the
AABB implementation of DirectModel was sometimes faster than our imple-
mentations. This occured in average for &~ 0.2% of all intersection tests, which
means that for &~ 99.8% of all cases, our algorithms were faster. This figure is
based on timing the intersection tests with the CPU clock, which means that
anomalies due to cache misses and page faults are included.

3.2 OBB

We did not have any implementation of a traditional OBB-algorithm to compare
our OBB-algorithm with. What we did was to use the same AABB hierarchy,
as in the previous tests, on our algorithm, modified to handle arbitrary oriented
bounding boxes, i.e. an additional load of 9 multiplications and 6 additions. We
then compared the results with the performance of the AABB implementation
of [DirectModel].

The OBB-algorithm included the plane-coherency test, the octant test, mask-
ing and the TR coherency test. We can see from comparisons between our
version of OBB-algorithm and the AABB view frustum culler in [DirectModel]
that the added overhead of the OBB capacity is about 10%. However, an OBB
hierarchy might be a better structure for view frustum culling than AABBs,
since they can fit more tightly.

For pure translations, much of the testing is done by the TR coherency
test which works exactly the same for OBBs and AABBs. For random user
navigation and pure rotations many intersection tests will be computed by the
basic intersection test where the only difference between the two algorithms are
found.

3.3 Bounding Spheres

Statistics for frustum-sphere culling were gathered for the same three scenes used
for the AABBs/OBBs. We compared our algorithms to Cosmo3D [Cosmo3D]
and the results are presented in tables 4- 6.

18



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 1.12 1.10 1.10 1.13

Plane-coherency test 1.20 1.11 1.10 1.27

Octant 1.20 1.11 1.10 1.27

Mask 1.02 1.01 1.01 1.01

TR coherency 1.03 1.02 1.02 1.05

Plane-coherency test

+ octant test 1.18 1.09 1.09 1.27

Plane-coherency test

+ masking 1.16 1.07 1.07 1.22

Plane-coherency test

+ TR coherency 1.03 1.02 1.02 1.05

Plane-coherency test

+ octant test + masking 1.16 1.06 1.06 1.23

Plane-coherency test

+ octant test

+ TR coherency 1.09 1.02 1.01 1.19

Plane-coherency test

+ octant test + masking

+ TR coherency 1.06 0.97 0.97 1.13

Table 4: Casel: Data from measurements between a standard sphere algorithm
and our new sphere algorithm, with different optimizations added to it. The
figures show average speed up times.

19



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 1.18 1.21 1.23 1.18

Plane-coherency test 1.16 1.20 1.21 1.16

Octant 1.21 1.23 1.23 1.16

Mask 1.10 1.08 1.09 1.06

TR coherency 1.12 1.12 1.13 1.10

Plane-coherency test

+ octant test 1.21 1.23 1.23 1.17

Plane-coherency test

+ masking 1.10 1.12 1.1 1.08

Plane-coherency test

+ TR coherency 1.14 1.18 1.18 1.13

Plane-coherency test

+ octant test + masking 1.14 1.17 1.16 1.10

Plane-coherency test

+ octant test

+ TR coherency 1.14 1.17 1.16 1.10

Plane-coherency test

+ octant test + masking

+ TR coherency 1.08 1,08 1,07 1.02

Table 5: Case2: Data from measurements between a standard sphere algorithm
and our new sphere algorithm, with different optimizations added to it. The
figures show average speed up times.

20



Algorithm general random pure pure
navigation | user nav. | rotation | translation

only Basic intersection test 1.10 1.09 1,09 1.11

Plane-coherency test 1.11 1.09 1.08 1.16

Octant 1.04 1.04 1.03 1.02

Mask 1.00 1.01 1.01 1.02

TR coherency 1.02 1.03 1.02 1.03

Plane-coherency test

+ octant test 1.09 1.07 1.06 1.16

Plane-coherency test

+ masking 1.07 1.05 1.05 1.14

Plane-coherency test

+ TR coherency 1.08 1.06 1.05 1.13

Plane-coherency test

+ octant test + masking 1.06 1.04 1.05 1.13

Plane-coherency test

+ octant test

+ TR coherency 1.03 1.01 1.00 1.09

Plane-coherency test

+ octant test + masking

+ TR coherency 1.04 1.01 1.01 1.09

Table 6: Case3: Data from measurements between a standard sphere algorithm
and our new sphere algorithm, with different optimizations added to it. The
figures show average speed up times.

21



Algorithm general random pure pure
navigation | user mav. | rotation | translation
Simple 1.22 1.18 1.17 1.30
Simple + Octant Test 1.22 1.18 1.17 1.31
Simple + Non-symmetric 1.22 1.17 1.17 1.28

Table 7: Case 1:Data from measurements between a standard sphere algorithm
and one with simple code optimization applied. The figures show average speed

up times.
Algorithm general random pure pure
navigation | user nav. | rotation | translation
Simple 1.39 1.39 1.40 1.33
Simple + Octant Test 1.41 1.41 1.41 1.34
Simple + Non-symmetric 1.35 1.37 1.37 1.31

Table 8: Case 2:Data from measurements between a standard sphere algorithm
and one with simple code optimization applied. The figures show average speed
up times.

These statistics are not as encouraging as for AABBs/OBBs. We notice
that the Basic Intersection Test, the Plane-Coherency Test and the Octant Test
are comparable in performance, and that no combination of the algorithms did
improve upon the performance. Roughly, our algorithms are 1.2 times faster
than Cosmo3D. The conclusion to draw from this is that the sphere-plane test
is much cheaper than the AABB/OBB-plane test, and therefore there is no big
win in using our optimizations.

Instead we use the simple appraoch described in section 2.4. The statistics
are shown in tables 7-9.

There are roughly no difference between the performance among these three
optimizations, but we note that these gave significantly better performance than
the previous algorithms. Our recommendations for a frustum-sphere algorithm
is therefore the Simple + Non-symmetric which is roughly as fast as Simple and
Simple + Octant Test and more general.

Algorithm general random pure pure
navigation | user nav. | rotation | translation
Simple 1.18 1.16 1.16 1.22
Simple + Octant Test 1.18 1.16 1.15 1.22
Simple + Non-symmetric 1.17 1.16 1.15 1.21

Table 9: Case 3:Data from measurements between a standard sphere algorithm
and one with simple code optimization applied. The figures show average speed
up times.

22



3.4 In General

Performance measurements when including masking shows that we actually
decrease speed, by 5% - 10% compared to not adding the masking. This can
be explained by the fact that we have to insert a mask test and a conditional
branch before each plane intersection test. A conditional branch can be very
expensive if it causes a pipeline stall.

If we could eliminate the low-level polygon clipping against the window bor-
der corresponding to a view frustum plane, for all nodes that are totally inside
that plane, then maybe masking could pay off for more cases.

The TR coherency test greatly enhances performance for the special kind of
navigation commonly used in games like Doom and Quake, where pure transla-
tions and pure rotations are most common (not a combination of both simulta-
neously).

4 Related Work

When reviewing existing view frustum culling algorithms [Bishop98, DirectModel,
Cosmo3D, Hoff96a, Hoff96b, Hoff97, Green95, Greene94|, we found that there
are two common ways to approach the view frustum culling problem. One ap-
proach is to perspective transform the bounding volume, of a node to be tested
and the view frustum, to the perspective coordinate system and perform the
testing there. This is popular when the bounding volumes are axis aligned
bounding boxes, since this results in testing two AABBs (if the perspective
transformed AABB is bounded by a minimal AABB, see figure 10) against each
other, which can be done with only six comparisons after the transformation
has been done. The disadvantage is that we must transform the bounding vol-
ume to the perspective coordinate system. This means that all eight vertices
of the AABB must be multiplied with the view- and projection (perspective)
matrix, which includes at least 72 multiplications. The view frustum culler in
DirectModel is based on this method [DirectModel].

The other approach is to test the bounding volume against the six planes
defining the view frustum [Cosmo3D, Hoff96a, Hoff96b, Hoff97, Green95, Greene94].
This has the advantage that in many cases, trivial rejection or acceptance tests
can be made [Greene94, Green95]. Should these fast tests fail, more expensive
intersection tests must be computed.

Cosmo3D uses a bounding sphere hierarchy and tests the spheres against the
view frustum, plane by plane, exiting as soon as the sphere is completely outside
any plane. It also performs the more expensive tests required for the corners
and edges of the view frustum, to achieve an exact intersection test between the
sphere and the view frustum.? In our bounding sphere algorithm we only do
the cheap plane/sphere test, and if they are insufficient we continue with the
spheres of the children. Our results show that we gain speed this way.

9We came to this conclusion by testing spheres placed close to the corners of the frustum
and interpreting this result.

23



T A

& VF’ m VF’

AABB AABB’ AABB”’
(@) (o) ()

Figure 10: (a) View frustum and an AABB. (b) The same view frustum and
AABB perspective transformed. (c) The perspective transformed AABB is
bounded by a minimal AABB in the perspective coordinate system, which is
tested for intersection with the view frustum.

Some API’s [Cosmo3D, Performer| do the tests in the view coordinate sys-
tem, where the camera is located at the origin and looking from the negative
z-axis. We utilized this to remove some calculations for our bounding sphere
algorithm.

Yet another approach to make a view frustum culler (VFC) could be to use
collision detection algorithms to detect the collision between the BVs of the
nodes and the view frustum. To do this, we could for instance use an OBB-
based algorithm [Gottschalk96], a DOP based [Klosowski97] or a voronoi-clip
algorithm [Mirtich97]. However, generally it is easier to optimize a specific sub-
problem (finding the intersection between a frustum and a bounding volume),
than the more general problem of detecting collisions between any volumes.

We may also try to extend existing 2D-algorithms [Maillot92, Middleditch89,
Weiler94] to three dimensions, like Carvalho et al. [Carvalho95], who present a
point-in-polyhedron testing method. When glancing at this possibility we did
not find any approach that seemed to be as fast as those presented in this paper,
but it might be an area worth some further research.

VFCs can be based on BSP-trees [Chin95] to gain speed, but the drawback
of BSP-based approaches is that BSP-trees only represent static environments.

Slater et al. [Slater97] present a VFC based on a probabilistic caching
scheme, which according to their results provides comparable speed ups to our
methods.'® They test their VFC by navigating with combinations of separate
pure rotations and pure translations (which gives spatial coherence advantages),
while we also test our provided speed ups for arbitrary navigation, where the
step between two frames consists of both a rotation and a translation. Further-
more, our algorithm does not erroneously cull any visible objects nor produce

10G]ater’s algorithm [Slater97] is similar to our algorithms, in the sense that it also tries
to minimize the work by caching information and avoiding more expensive intersection tests.
Comparing the speed and efficiency of the two algorithms is hard since the implementations
are done on different machines with different processors. The most fair way is probably to
compare their reported speed up of 1.7 with our figure of 1.4 for bounding spheres, and for
AABBs with the speed ups provided by the combinations of our optimizations compared to
our basic intersection test, which is 1.5-3.6 times. It is however important to mention that
Slater’s et al. method can cull nodes that actually should be visible.

24



any other visible artifacts. Our approach works for any BVs and does not have
any parameters that must be properly adjusted, in contrast to Slater’s et al.
which uses ellipsoids and is dependent of parameter settings.

It is common to assume that the built in VFCs in the commercial scene
graph APIs, like Cosmo3D, Performer and DirectModel, are good. However,
we have shown in this paper that significantly faster algorithms can be created,
with the combinations of some new and some old optimizations.

5 Conclusion and Future Work

We have created a view frustum culler, containing four optional optimizations
(the plane-coherency test, masking, the octant test and the TR coherency test),
and thus achieved faster view frustum culling algorithms, at the expense of
sometimes having to cache data in the bounding volume structure. We have
tested different combinations to realize when to use which optimizations.

The small extra cost of testing an OBB compared to an AABB against a
view frustum, leads us to draw the conclusion that OBBs might be a better
choice as a bounding volume than AABBs, since OBBs can fit tighter and do
not have to be updated when the object rotates. It would be interesting to
confirm this with some experiments.

We have not made use of the fact that in general, the near clip plane and
far clip plane are parallel, in any other cases than for the octant test and the
TR coherency test. We could add this to our basic intersection test as well.
We should then treat the near- and far clip planes as a pair of parallel planes
instead of two individual, saving at least 6 multiplications and 2 evaluations of
the n- and p-vertices. The reason why we did not include this is that we did not
find an easy way to insert this into the algorithm, without slowing down other
parts or make the code ugly.

If we find that the bounding volume is neither completely outside any plane,
nor completely inside all planes, we might want to store one of the intersecting
planes so that we can start checking against that plane in the next round, hoping
that the bounding volume would have moved outside the plane and the view
frustum.

It would also be interesting to modify our algorithm to handle DOPs [Klosowski97]
as bounding volumes. For DOPs we should probably take advantage of that they
consist of pairs of parallel planes. Finding the n- and p-vertices or maximum
extension in a specific direction from the center of a DOP is not trivial. Look
up tables could perhaps be used in some cases, or we might have to approach
the problem in a totally different way.

Perhaps could improvements be done by approximating the view frustum
with a cone, and compute intersections between the cone and the bounding
volumes [Shene95]. We did, however, not find a way to utilize this efficiently.

25



6 Acknowledgements

We would like to thank professor Per Stenstrom for his extensive guidance in im-
proving the quality of this paper. Thanks to Lars Ostlund, manager of research
and development at Digital Plant Technologies AB, ABB, for the financial sup-
port. We also thank FEric Haines for pointing us at his and Wallace’s paper
[Haines94].

Figure 11: Snapshot from the environment of case 1. It consists of ~ 184.000
polygons

References

[Berg97] M. de berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,
“Computational Geometry - Algorithms and Applications”,
Springer-Verlag, Berlin, 1997.

26



[Bishop98]

[Carvalho95)

[Chin95)

[Clark76]

[Cosmo3D]

[Donovan94]

[DirectModel]

[Fahrenheit]

Lars Bishop, Dave Eberly, Turner Whitted, Mark Finch, Michael
Shantz, “Designing a PC Game Engine”, Computer Graphics in
Entertainment, pp. 46-53, January/february 1998.

Paulo Cezar Pinto Carvalho, Paulo Roma Cavalcanti, “Point in
Polyhedron Testing using Spherical Polygons”, Graphics Gems
V, Heckbert, pp. 42-49, 1995.

Norman Chin, “A Walk through BSP Trees”, Graphics Gems V,
Heckbert, pp. 121-138, 1995.

James H. Clark, “Hierarchical Geometric Models for Visible Sur-
face Algorithm”, Communications of the ACM, vol. 19, no. 10,
pp- 547-554, October 1976.

Cosmo3D programmers’ guide, Silicon Graphics Inc., 1997.

Walt Donovan, Tim van Hook, “Direct Outcode Calculation for
Faster Clip Testing”, Graphics Gems 1V, Heckbert, pp. 125-131,
1994.

DirectModel 1.0 Specification, Hewlett Packard Company, Cor-
valis, 1998

Specification: Fahrenheit Scene Graph, Microsoft, 1998.

[Gottschalk96] S. Gottschalk, M.C. Lin, D. Manocha, “OBBTree: A Hierar-

[Greene94]

[Green95)

[Haines94]

[Hoff96a)

chical Structure for Rapid Interference Detection,” Computer
Graphics (SIGGRAPH’96 Proceedings), pp. 171-180, August,
1996.

Ned Greene, “Detecting Intersection of a Rectangular Solid and
a Convex Polyhedron”, Graphics Gems IV, Heckbert, pp. 74-82,
1994.

Daniel Green, Don Hatch, “Fast Polygon-Cube Intersection Test-
ing”, Graphics Gems V, Heckbert, pp. 375-379, 1995.

“Shaft Culling for Efficient Ray-Traced Radiosity”, Eric A.
Haines and John R. Wallace, Photorealistic Rendering in Com-
puter Graphics (Proceedings of the Second Eurographics Work-
shop on Rendering), Springer-Verlag, New York, pp.122-138,
1994.

K. Hoff, “A Fast Method for Culling of Oriented-
Bounding  Boxes (OBBs) Against a  Perspective
Viewing  Frustum in Large ”Walktrough” Models”,
http://www.cs.unc.edu/ hoff/research/index.html, 1996.

27



[Hoff96b] K. Hoff, “A Faster Overlap Test for a Plane and a Bound-
ing Box”, hitp://www.cs.unc.edu/ hoff/research/index.html,
07/08/96, 1996.

[Hoff97] K. Hoff, “Fast AABB/View-Frustum Overlap Test”,
hitp://www.cs.unc.edu/ hoff/research/index.html, 1997.

[Klosowski97] J.T. Klosowski, M. Held, J.S.B. MitchellH. Sow-
izral, K. Zikan “Efficient Collision Detection Us-
ing Bounding Volume  Hierarchies of k-DOPs” |
http:/ /www.ams. sunysb.edu/~jklosow/projects/coll_det/collision.html,
1997.

[Maillot92] Patrick-Gilles Mailott, “A New, Fast Method For 2D Polygon
Clipping: Analysis and Software Implementation”, ACM Trans-
actions on Graphics, Vol. 11, No. 3, July 1992, pp. 276-290,
1992.

[Middleditch89] A. E. Middleditch, T. W. Stacey, S. B. Tor, “Intersection Algo-
rithms for Lines and Circles”, ACM Transactions on Graphics,
Vol. 8, No. 1, January 1989, pp. 25-40, 1989.

[Mirtich97]  Brian Mirtich, “V-Clip: Fast and Robust Polyhedral Colli-
sion Detection”, Submitted to ACM Transactions on Graphics,
July, 1997, http://www.merl.com/reports/TR97-05/index.html,
1997.

[Moller98| Tomas Moller, “The Dilation Theorem for Intersection Testing”,
i preparation.

[Paeth95] Alan Wm. Paeth, “Distance Approximation and Bounding Poly-
hedra”, Graphics Gems V, Heckbert, pp. 7887, 1995.

[Performer]  Performer programmers’ guide, Silicon Graphics Inc., 1997.

[Performer-b] #include performer/pr/pfGeoMath.h, Silicon Graphics Inc.,
1997.

[SIGGRAPH93] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti,
”Surround-screen Projection-based Virtual Reality: The Design
and Implementation of the CAVE”, Computer Graphics (SIG-
GRAPH ’93 Proceedings), pp 135-142, volume 27, aug, 1993.

[Shene95| Ching-Kuang Shene, “Computing the Intersection of a Line and
a Cone”, Graphics Gems V, Heckbert, pp. 227-231, 1995.

[Slater97] Mel Slater, Yiorgos Chrysanthou, Department of Computer Sci-
ence, University College London, “View Volume Culling Us-
ing a Probabilistic Caching Scheme” ACM VRST °97 Lausanne
Switzerland, 1997.

28



[Weiler94] Kevin Weiler, “An Incremental Angle Point in Polygon Test”,
Graphics Gems IV, Heckbert, pp. 16-23, 1994.

29



